Accretion shocks in the laboratory: Design of an experiment to study star formation

R.P. Younga,*, C.C. Kuranza, R.P. Drakea, P. Hartiganb

a University of Michigan, Department of Climate and Space Sciences and Engineering, 2455 Hayward St., Ann Arbor, MI 48109, USA
b Rice University, Physics and Astronomy Department, 6100 Main MS-61, Houston, Texas 77005, USA

A R T I C L E I N F O

Article History:
Received 29 August 2016
Accepted 16 January 2017
Available online 13 February 2017

Keywords:
Laboratory astrophysics
Star formation
Accretion
Shocks
Jets

A B S T R A C T

We present the design of a laboratory-astrophysics experiment to study magnetospheric accretion relevant to young, pre-main-sequence stars. Spectra of young stars show evidence of hotspots created when streams of accreting material impact the surface of the star and create shocks. The structures that form during this process are poorly understood, as the surfaces of young stars cannot be spatially resolved. Our experiment would create a scaled “accretion shock” at a major (several kJ) laser facility. The experiment drives a plasma jet (the “accretion stream”) into a solid block (the “stellar surface”), in the presence of a parallel magnetic field analogous to the star’s local field. We show that this experiment is well-scaled when the incoming jet has \(\rho \sim 10^{-6} - 10^{-5} \text{ g cm}^{-3} \) and \(u \sim 100 - 200 \text{ km s}^{-1} \) in an imposed field of \(B \sim 10 \text{ T} \). Such an experiment would represent an average accretion stream onto a pre-main sequence star with \(B \sim 700 \text{ G} \).

© 2017 Elsevier B.V. All rights reserved

1. Introduction

Accretion shocks form when material from an accretion disk impacts at the surface of the object growing at its center. The object’s magnetic field governs the interaction between the two through what it called magnetospheric accretion. Originally proposed by Königl [22], who extended the compact object work of Ghosh and Lamb [8,9] to T Tauri stars (low-mass pre-main-sequence stars), the magnetospheric accretion model has material from the accretion disk lifted out of the plane of the disk and “funneled” along the star’s magnetic field lines to its surface. Today, there is ample evidence that magnetospheric accretion occurs on T Tauri stars (see Bouvier et al. [3] and references therein). There is also evidence of magnetospheric accretion occurring on T Tauri stars’ more massive counterpart, Herbig Ae/Be stars [12,29,31].

When the supersonic material impacts the surface of the young star—T Tauri or Herbig Ae/Be—an accretion shock hot enough to emit soft X-rays (\(T \sim 10^6 - 10^7 \text{ K} \)) forms. There is ample evidence of this in the X-ray spectra of T Tauri stars [1,2,4,13,21,38,42,43], and evidence is growing that at least some Herbig Ae/Be stars exhibit X-ray-emitting accretion shocks as well [6,10,44,45].

The mass accretion rate of a star (\(M \), usually on the order of \(10^{-8} \text{ M}_\odot \) per year) can be determined from the effect that these X-ray emitting accretion shocks have on the star’s spectrum. The X-rays heat the surrounding photosphere, producing spots of hot plasma [5]. Compared to a similar non-accreting star, an accreting star ought to have excess emission in the optical and UV due to these spots, and its accretion rate can be calculated from the amount of excess emission [15,16,30,33,46].

However, these accretion rate calculations are only as good as the understanding of accretion shock structure behind them. Because the surfaces of young stars cannot be spatially resolved, the structure of accretion shocks has not been directly studied. For example, do accretion shocks penetrate the star’s photosphere, potentially hiding much of the accretion shock’s energy from observers? Or, do accretion shocks create large “splashes” when they hit the surface of the star, making it appear the shock covers more surface area than it actually does? Either of these scenarios would potentially change the calculated accretion rate significantly.

Simulations of accretion shocks have largely served to underscore how complicated and inherently three-dimensional the systems are. Three-dimensional simulations by Romanova et al. [39] predict that accretion hotspots should be inhomogenous and irregularly shaped. Likewise, simulations by Orlando et al. [34] found that T Tauri accretion shocks can produce violent splash zones, particularly when the magnetic field strength is too low to contain the accretion shock.

To this end, we propose our design of an experiment to produce a scaled laboratory version of an accretion shock. We would use a high-energy (several kJ) laser to make a supersonic plasma jet (the “accretion stream”) and drive it into a solid block (the “stellar surface”) in the presence of an imposed magnetic field. Section 2 establishes the connection between magnetic accretion on a...
pre-main-sequence star and the laboratory experiment and lays out the plasma parameters that we must seek to have a well-scaled experiment. Section 3 discusses design considerations of our experiment, and Section 4 presents our conclusions.

2. Experimental goals

2.1. Basic configuration

Laboratory astrophysics offers the ability to probe scaled astrophysical systems in an experimental setting [36,37,41]. Examples of such experimental campaigns include the work of Kuranz et al. [25], who created Rayleigh–Taylor blast waves relevant to supernovae remnants; the work of Hartigan et al. [14], who created deflected supersonic jets relevant to Herbig–Haro objects; and the work of Kraudel et al. [23], who created reverse shocks relevant to interacting binaries.

Our astrophysical system, an accreting young star, consists of (1) accreting material which collides with (2) the surface of the growing star in the presence of (3) a magnetic field parallel to the material’s flow and perpendicular to the star’s surface. Creating a scaled version of this system means translating these three into the lab, as seen in Fig. 1. In the experiment, we drive a plasma jet (the “accreting material”) into a solid block (the “stellar surface”) with an imposed magnetic field.

2.2. Dimensionless numbers

Astrophysical systems can never be scaled and reproduced perfectly in the lab. Having a worthwhile experiment, therefore, hinges on discerning which physical processes are most important and translating them into an experiment appropriately. Rytov et al. [41] lays out a theoretical basis for doing so: one must ensure that dimensionless numbers (for example, Reynolds number) that define the system are at least in similar regimes.

There are five dimensionless numbers that concern the accretion shock experiment. The first two determine whether a shock can form in the first place, the second two determine the role of magnetic fields in the experiment, and the last is the Reynolds number, which relates the importance of viscosity in the system. The scaling criteria we impose are as follows:

1. \(\mathcal{M} > 1 \). \(\mathcal{M} \) is the Mach number, the ratio of the flow velocity of the jet to the speed of sound inside the jet; we need a supersonic jet in order to have a shock. Sound speed was calculated according to

\[
 c_s = 9.79 \times 10^9 \sqrt{\frac{\gamma(Z + 1)T_e}{A}} \text{ cm s}^{-1},
\]

where \(\gamma \) is the adiabatic index, \(Z \) is the ionizations, \(T_e \) is the temperature in eV, and \(A \) is the atomic mass in proton masses.

2. \(\lambda_{\text{MFP}} < \mathcal{L} \). \(\lambda_{\text{MFP}} \) the ion-ion mean free path inside the plasma and \(\mathcal{L} \) is the overall lengthscale of the experiment. We impose \(\lambda_{\text{MFP}} < \mathcal{L} \) in order to observe a shock in the experiment.

Mean free path was calculated according to

\[
 \lambda_{\text{MFP}} = \frac{1}{n_i \sigma_{90}^i 4 \ln \Lambda_i},
\]

where \(n_i \) is the ion density, \(\sigma_{90}^i \) is the 90° cross-section, and \(\ln \Lambda_i \) is the ion-ion Coulomb lambda. The 90° cross-section was calculated according to

\[
 \sigma_{90}^i = \pi e^4 Z^4 \frac{m_i}{m_{\text{el}}^2},
\]

where \(e \) is the charge of an electron, \(Z \) is the average ionization, \(m_i \) is the ion mass, and \(u \) is the relevant velocity (in this case the flow velocity).

This criterion (\(\lambda_{\text{MFP}} < \mathcal{L} \)) also ensures that our plasma is collisional. Park et al. [35] give the condition for a collisionless plasma as \(\mathcal{L} \ll \lambda_{\text{MFP}} \), where \(\lambda_{\text{MFP}} \) is the ion MFP of the highest ion species, so a plasma with \(\lambda_{\text{MFP}} < \mathcal{L} \) would be collisional.

3. \(\mathcal{E}_M < \mathcal{L} \). \(\mathcal{E}_M \) is the magnetic diffusion lengthscale, and \(\mathcal{L} \) is the overall lengthscale of the experiment. We impose \(\mathcal{E}_M < \mathcal{L} \) in order to ensure the magnetic field does not diffuse away during the experiment. To find \(\mathcal{E}_M \), we consider a generic diffusion equation,

\[
 \frac{\partial \phi}{\partial t} = D \nabla^2 \phi,
\]

where \(\phi \) is some generic diffusing quantity and \(D \) is the generic diffusion constant with units \(L^2 T^{-1} \). Applying unit analysis we find

\[
 \frac{\phi}{\tau} = \frac{D}{\mathcal{E}_M},
\]

where \(\tau \) is the timescale of interest and \(\mathcal{E}_M \) is the diffusion length over \(\tau \). This yields \(\mathcal{E}_M = \sqrt{D \tau} \).

In the case of magnetic diffusion, the diffusion constant is the magnetic diffusivity in the post-shock region, \(\nu_M \), and the timescale of interest is \(L/u \), the dynamic timescale. The magnetic diffusivity is,

\[
 \nu_M = \frac{c^2 \eta_{\perp}}{4 \pi},
\]

where \(c \) is the speed of light, and \(\eta_{\perp} \) is the transverse Spitzer resistivity. The expression for transverse Spitzer resistivity is taken from the Plasma Formulary, [18]:

\[
 \eta_{\perp} = 1.15 \times 10^{14} \frac{Z \ln \Lambda}{T_e^{3/2}} \text{ sec},
\]

where \(Z \) is the ionization, \(\ln \Lambda \) is the Coulomb logarithm, and \(T_e \) is the electron temperature in eV.

Altogether this yields

\[
 \mathcal{E}_M = \sqrt{\frac{\nu_M L}{u} = \sqrt{\frac{c^2 \eta_{\perp} L}{4 \pi u}}}
\]

4. \(0.1 < \beta_{\text{ram}} < 10 \). \(\beta_{\text{ram}} \) is the ratio of ram pressure of the jet to the magnetic pressure of the field

\[
 \beta_{\text{ram}} = \frac{\rho u^2}{B^2 / 8 \pi},
\]

where \(B \) is magnetic field strength.

A typical accreting young star system with a magnetic field of 1000 G will have \(\beta_{\text{ram}} \sim 1 \). The range of acceptable \(\beta_{\text{ram}} \) imposed here corresponds to magnetic field of 3000 G (low \(\beta_{\text{ram}} \)) to 300 G (high \(\beta_{\text{ram}} \)).
5. **Re > 10^3.** Re is the Reynolds number, the ratio of the viscous timescale to the dynamic timescale, \(\frac{Lu}{v_i} \), where \(v_i \) is the ion viscosity (defined below). Imposing \(Re > 10^3 \) insures that the viscous smoothing length scale, \(\ell_v \), is smaller than all other length scales.

As before \(\ell_\nu = \sqrt{Dr} \). In this case, the diffusion constant, \(D \), is the ion viscosity, \(\nu_i \), and the timescale of interest, \(\tau \) is the dynamic timescale, \(\frac{Lu}{C0} \).

\[
\ell_v = \sqrt{Dr} = \sqrt{\frac{\nu_i L}{u}} - \frac{L}{\sqrt{Re}}.
\]

The ion viscosity, \(\nu_i \), was calculated according to

\[
\nu_i = \frac{u_{th,i}^2}{\nu_i} = 2 \times 10^{19} \frac{T_i^{3/2}}{n_i Z^2 \sqrt{A/1nA}} \text{ cm}^2 \text{ s}^{-1},
\]

where \(u_{th,i} \) and \(\nu_i \) are the ion thermal velocity and the ion-ion collisional frequency, respectively, and expressions for both were taken from the Plasma Formulary, [18]. In the expression for \(\nu_i \), \(T_i \) is the ion temperature in eV, \(n_i \) is the ion density in \(\text{cm}^{-3} \), \(Z \) is the ionization, \(A \) is the atomic mass, and \(\ln A \) is the Coulomb logarithm.

To have a well-scaled experiment, we need these five criteria to be true at once. For every material, there is some four-dimensional volume in \(T_e - u - \rho - B \) space where all five of these criteria are met.

A four dimensional space is difficult to visualize, much less translate into a figure. In order to investigate the parameter space, we held \(T_e \) and \(B \) constant and considered the 2-D \(u - \rho \) space, as seen in Fig. 2. In each of the plots in Fig. 2, the shaded area represents the region in \(u - \rho \) space where the criterion is not met. Obviously, this area will shift depending on material type, temperature and magnetic field strength. We assumed that the magnetic field is 10T because this is current capability; from the perspective of the dimensionless number criteria this is no downside to a higher field.

In experimenting with material and temperature, we found that every material has an ideal temperature at which the acceptable area is maximized. (For carbon this ideal temperature is around 60 eV, which is why that is shown in Fig. 2.) Second, both very low-Z and very high-Z materials had smaller acceptable area than medium-Z materials such as carbon. We chose to present carbon because it is a non-toxic, medium-Z material that lends itself readily to target fabrication.

As seen in Fig. 2, the first criterion, Mach number, favors high velocity. The second criterion, collisionality, favors high density, low velocity conditions, because \(\lambda_{MFP} \propto n_i \) and \(\lambda_{MFP} \propto \rho^2 \). The third criterion, magnetic diffusion length, favors high velocity as well because \(\lambda_{MFP} \propto 1/\rho \). Magnetic diffusion length also favors higher temperatures because \(\lambda_{MFP} \propto 1/T^{1/4} \). The fourth criterion, \(\beta_{ram} \), favors low density, low velocity conditions because \(\beta_{ram} \propto \rho \) and \(\beta_{ram} \propto \rho^2 \). (As seen in Fig. 2, it is possible for density and velocity to be too low, but the high \(\beta_{ram} \) end of the range is more limiting.) The fifth and final criterion, Reynolds number, favors high velocity, high density conditions because \(Re \propto u \) and \(\nu_i \propto 1/n_i \). Taken together, these criteria limit the parameter space to an area around \(\rho \sim 10^{-6} - 10^{-5} \text{ g cm}^{-3} \) and \(u \sim 100-200 \text{ km s}^{-1} \) satisfies all five.

Table 1 presents the plasma parameters and calculated length scales and dimensionless numbers for the experimental plasma and the astrophysical system.

3. Experimental considerations

As seen in Fig. 1, our experiment requires an incoming plasma jet (the “accreting flow”) and a surface for it to run into (the “stellar surface”). This paper does not delve into the details of producing a steady carbon plasma jet with \(T_e \sim 60 \text{ eV}, \rho \sim 10^{-14} - 10^{-13} \text{ g cm}^{-3}, \) and \(u \sim 100-200 \text{ km s}^{-1} \). However, we note that other experimental teams have produced plasma jets made of CH or C, for example Gregory et al. [11] and Kuramitsu et al. [24].

Fig. 3 shows the schematic of one possible experiment, based on the concept used by Gregory et al. [11], which produced jets with \(\rho \sim 10^{-14} \text{ g cm}^{-3}, T_e \sim 10 \text{ eV}, \) and \(u \sim 300 \text{ km s}^{-1} \). In this design, lasers hit the rear side of a thin, conical target (shown in cross section), producing a collimated plasma jet that impacts against a solid block.
producing shock structures for us to study. A magnetic field parallel to the direction of jet flow is imposed on the entire experiment.

Regardless of how the plasma jet is produced, the primary diagnostics for this experiment would be proton radiography, self-emission visible light imaging, and perhaps imaging Thomson scattering. Imaging the experiment in self-emitted visible/UV light would reveal the highest temperature structures because they would glow brightest. (The opacity is too low for X-ray radiography to reveal mass density.) We would hope to see the bright shock front.

Likewise, proton radiography can be used to image magnetic field structures. Conceptually, proton radiography is similar to more traditional X-ray radiography. A source generates protons (analogous to the X-rays), which pass through the experiment and strike piece of plastic (analogous to X-ray film). We intend to use a monoenergetic-proton radiography technique described in Li et al. [26,27].

A capsule of deuterium-helium-3 is imploded with high-intensity lasers, generating a burst of 14.7 MeV and 3.6 MeV protons. These protons pass through the experiment and strike a piece of CR-39, a clear plastic nuclear track detector, leaving a trail of broken bonds in the plastic that can be developed as an image when the plastic is etched.

It might be possible to use Thomson scattering to ascertain plasma parameters. The geometry of the experiment (a jet hitting a solid block) makes Thomson scattering inherently complicated. But it might be possible to bring the probe beam in the side and use imaging Thomson scattering in a transverse direction (that is, perpendicular to the jet flow direction) [40]. This would tell us whether the edges of the shock (that is, the splash zone) are cooler and less dense that the central region, which would tie into the questions from Section 1.

4. Conclusions

To establish the connection between a typical accreting star system and the lab, we imposed five criteria on the dimensionless numbers that underly both systems:

1. $M > M_*$ where M_* is the Mach number.
2. $\lambda_{MFP} < L_*$ where λ_{MFP} is the ratio of the ion-ion mean free path.
3. $\lambda_{MFP} < L$ where λ_{MFP} is the magnetic diffusion lengthscale.
4. $0.1 < \beta_{ram} < 10$ where β_{ram} is the ratio of ram pressure of the jet to the magnetic pressure of the field.
5. $Re > 10^5$ where Re is the Reynolds number.

We find a region in parameter space where all five criteria are satisfied: a carbon plasma jet with $T_e \sim 60 eV, n_e \sim 10^{-6} - 10^{-5}$ cm$^{-3}$ and $u_j \sim 100-200$ km s$^{-1}$ with an imposed field of $B \sim 10^7$. Such an experiment would represent an average accretion stream onto a pre-main sequence star with $B \sim 700$ G. (Of course, scaling accretion streams onto young stars with lower magnetic fields is easily accomplished; we can always lower the imposed experimental field.)

At 700 G, we are above maximum expected magnetic field on a Herbig Ae/Be star, usually expected to be a few hundred Gauss [48], but right at the minimum field for a T Tauri star, which have measured fields of several kG [19,20,47,49]. To recreate the conditions on a $B = 2000$ G star, we need $\beta_{ram} = 0.3$, which requires $B \sim 30$ T, something outside the current capabilities. However, improvements in magnetic field generation could open up this experimental regime.

Acknowledgments

This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0002956, and the National Laser User Facility Program, grant numbers DE-NA0002719 and R19071, and through the Laboratory for Laser Energetics, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944.

We thank Nuria Calvet for enlightening discussions on magneto-spheric accretion and accretion shock models.

References

