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Laboratory astrophysics holds great promise not only as a highly effective validation tool for astrophysical
magneto-hydrodynamics (MHD) codes but it also presents a unique challenge for these codes. The high-
density plasmas found in these experiments are not well modeled by the ideal equations of state (EOS)
found in most astrophysical simulation codes. To solve this problem, we replaced the ideal EOS scheme in
an existing MHD code, AstroBEAR, with a non-ideal EOS method and validated our implementation with
van der Waals shock tube tests. The improved code is also able to model flows that contain more than
one material, as required in laboratory experiments. Simulations of jet experiments performed at the
OMEGA Laser reproduce the morphology of the jet much better than when the code used a single
material and an ideal EOS.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Hydrodynamical simulation codes are an essential tool in
astrophysics research of phenomena as diverse as stellar outflows,
supernovae, and accretion disks. These codes are separable into two
main categories, Lagrangian and Eulerian. Lagrangian codes are
characterized by a base grid of cells that are initializedwith physical
properties such as mass, temperature and velocity. These cells then
move and change shape according to solutions to the Euler fluid
dynamical equations. This approach essentially treats each cell as
a particle that represents the average value for all the particles in
that cell. Lagrangian codes can use grid cells of different shapes and
sizes, allowing for large and geometrically complex initial grids.
These codes work best when the flows are not overly complicated
and are confined to a single dimension. For example, 1D star
formation simulations of collapsing gas can be done very effectively
with Lagrangian codes. However, as the flows become more
: þ1 713 348 4150
arver).

ll rights reserved.
complicated, cells may fold back onto themselves and the resulting
tangled grid then requires a complicated regridding procedure.
When multi-dimensional shocks occur, regridding inhibits the
ability of a Lagrangian code to work effectively. Hence, most multi-
dimensional codes designed to study stellar outflows and super-
novae, where shocks play a key role in the hydrodynamics, are
Eulerian.

Eulerian codes start with a similar base grid structure as
Lagrangian codes except the control volumes remain static rather
than moving with the flow. The fluxes of physical properties, such
as mass density, are calculated for a system of conservation laws. In
a conservative Eulerian code the flux out of a cell corresponds to
a flux into another cell. Thus the physical variables in question,
generally mass, energy, and momentum densities, are conserved
over the whole simulation.

Hydrodynamical codes have evolved over the past decades to
simulate more complicated flow structures, achieve higher reso-
lutions, lessen computational times, and include additional physics.
For example, expanding from 2D to 3D simulations was necessary
to deal with more complicated flow structures, and adaptive mesh
refinement codes (AMR; e.g FLASH [1], ENZO [2], and ORION [3])
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achieved faster computational times, resolved fine spatial scales in
areas such as gravitational collapse, and captured shocks better
than non-AMR codes. AMR is based on the concept of a cell size that
adapts during the simulation, with changes in the cell size confined
to the portions of the grid where smaller scale physics occurs. The
ability to have more cells only where needed increases the
computational efficiency of AMR codes, and parallelization also
leads to increased ability to handle large scale problems.

Another major challenge for hydrodynamical codes has been to
include magnetic fields, which play an important role in the
hydrodynamics of many astrophysical phenomena, such as
magnetized outflows and accretion disks. Such situations moti-
vated the addition of magnetic fields to hydrodynamics codes to
create magneto-hydrodynamics (MHD) codes. Codes such as ZEUS
[4] were among the first to expand to MHD. Finally, many astro-
physical situations require additional physics, e.g. molecule
formation on dust grains [5], relativistic physics [6], and complex
radiation transport [7]. MHD codes are constantly evolving to meet
these challenges.

Laboratory astrophysics is the most recent challenge to face
astrophysical MHD codes. This area of research uses high power
lasers to generate flows and shocks [8], which have analogs to jets
driven fromyoung stars [9]. Magnetic pinch facilities, such as the Z-
machine at Sandia National Laboratory, are also widely used in
laboratory astrophysics research. Laboratory experiments provide
a valuable validation tool not available to typical astrophysical
codes. Astronomical observations only provide data on the part of
a flow that radiates, but laboratory experiments generate more
direct data about the hydrodynamics involved in the entirety of
a particular flow. Therefore, a code validated via laboratory exper-
iments allows for greater confidence in the validity of many other
simulations done using that code. Unfortunately, the high-density
plasmas associated with these laboratory experiments are not well
approximated by the ideal gas equations of state (EOS) associated
with most astrophysical MHD codes. Instead, some type of non-
ideal gas equation of state capability must be added.

Incorporating a non-ideal equation of state into an astrophysical
MHD code represents the next step if simulations are to keep pace
with the technological advancements in laboratory astrophysics
studies. This paper focuses on AstroBEAR [10], an Eulerian based
code that has the 3D, MHD, AMR, and parallelization capabilities as
described above. Given AstroBEAR’s extensive use simulating the
types of astrophysical flow structures that laboratory experiments
are designed to reproduce, it provides a good base code uponwhich
to build a non-ideal gas EOS capability for simulating these labo-
ratory experiments.

In this paper, we will explore some differences between
a non-ideal EOS and an ideal EOS framework. We will discuss the
difficulties associated with incorporating a non-ideal EOS into an
ideal EOS-based code and what changes were necessary to adapt
AstroBEAR to a non-ideal gas code. We will also show the results
from our first simulation of a laboratory experiment using
AstroBEAR’s non-ideal EOS capability. We will compare ideal EOS
simulations, non-ideal EOS simulations, and experimental results.
These comparisons demonstrate that codes using a non-ideal EOS
framework can simulate laboratory environments more effec-
tively than the ideal framework traditionally used in astrophysical
codes.
2. Non-ideal EOS

Earlier versions of AstroBEAR had only ideal gas equation of
state capability. For an ideal gas the energy density, e, can be
expressed by:
e ¼ F
nkbT (1)
2

with degrees of freedom F, temperature T, number density n, and
Boltzmann’s constant kb. For an ideal gas, the adiabatic constant g
and the pressure P are given by:

g ¼ CP
CV

þ 2þ F
F

(2)

P ¼ nkbT ¼ rkbT
mmH

(3)

where CP and CV are the specific heats of the gas at constant pres-
sure and volume respectively, r is the mass density, mH is the mass
of hydrogen, and m is the mean molecular weight. For example the
mean molecular weight of titanium is defined by mTi¼mTi/(Zþ 1)
with mTi equal to the molar mass of titanium and Z the ionization
state of Ti, where Z¼ 0 is neutral Ti. Combining Eqs. (1)e(3) yields
the equation of state used by AstroBEAR when dealing with ideal
gases:

P ¼ ðg� 1Þe (4)

To utilize Eq. (3) to generate an ideal EOS for titanium we must
know how m depends on density and temperature. For a fixed
density, as the temperature increases titanium becomes more
ionized and m decreases. For example, mTiI¼ 47.90, mTiII¼ 23.95,
mTiIII¼ 15.97, etc. To approximate m as a function of temperature and
density for the ideal case we use the Saha equation:

niþ1ne
ni

¼ 2
�
2pmekbT

h2

�3=2 Ziþ1
Zi

e�Xi=ðkbTÞ (5)

where ni and niþ1 represent adjacent ionization states, ne is the
electron number density,me is the electron mass, T is temperature, h
is Planck’s constant, ci is the ionization energy for the ith ionization
state, and Z is the partition function. However at high temperatures
the complicated level structure of a metal such as titanium makes
the calculation of partition functions non-trivial. For the purposes of
our ideal titanium EOS calculations we assumed the ratio of partition
functions to be equal to 1. These partition function are of order unity
and should not have a significant effect on the results generated
using the Saha equation. For example, at a density of 1.0 g cm�3 and
temperature of 105 K, using our partition function assumption yields
a m of 15.75with TiII being the dominant ionization state. However if
we set ZTiIII/ZTiII¼ 2.0, the Saha equation yields a m of 14.95 only a 5%
change from our previous result.

Fig. 1 compares the pressureetemperature dependence of this
ideal EOS for titanium with a non-ideal EOS obtained from the
SESAME [12] tables, discussed in more detail below. The dominant
titanium species, from ideal calculations, is labeled on each figure.
As expected, these plots show that as the gas moves into a lower
density-higher temperature regime the ideal EOS and the SESAME
EOS converge. However, as the gas moves towards higher density-
lower temperature regimes the SESAME EOS begins to deviate from
the ideal EOS with the non-ideal nature of the gas most evident as
the density approaches the solid density of titanium, 4.5 g cm�3.

The basic assumption that underlies the ideal gas equation is
that there are only collisional interactions between particles.
However high-density plasmas contain charged particles in rela-
tively close proximity, leading to non-collisional interactions and to
non-ideal gas behavior. There are three main effects that cause
a non-ideal gas EOS to differ from the ideal EOS: Coulomb inter-
action, ionization potential perturbation, and electron degeneracy
gas pressure.
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Fig. 1. Real vs. Ideal EOS for titanium. The Roman numerals denote the dominant ionization state of the Ti, as determined from the Saha equation.
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At low number densities the Coulomb interaction between
particles is an overall attractive effect. Positively charged ions
attract negatively charged free electrons, known as Debye shield-
ing. This attraction causes the ions to be more bound which in turn
depresses the overall pressure of the gas. Debye shielding is

significant so long as n � 1:1� 105ðT=Z2Þ3 cm�3, where T is in
Kelvin and Z is the average ionization state of the gas [11]. For a gas
with Zw1 at T¼ 5.0�104 K, this condition is n� 1019 cm�3. In our
experiments the number densities range from 1021 to 1022 cm�3, so
we can neglect the effects of Debye shielding in our calculations.

As the separation between ions decreases, Coulomb repulsion
between the electrons bound to each ion increases. This interaction
causes the electrons to become more loosely bound and results in
an overall lower ionization potential at high densities. This ioni-
zation potential perturbation represents a major deviation from an
ideal EOS for laboratory experiments and can be approximated by
[11]:

DI ¼ 2ðZ þ 1Þe3
�ðpZðZ þ 1ÞnÞ

ðkbTÞ
�1=2

(6)

where Z is the average ionization state of the ideal gas, n is the
number density, and T is the temperature. For example, Ti gas with
r¼ 4.5 g cm�3 and T¼ 5.0�104 K has a change in average ioniza-
tion potential ofw35 eV. Given that the sum of the first 3 ionization
energies of Ti isw45 eVwe can expect that this will effectively raise
the average ionization state of Ti from 1.0 tow3.25. This increase in
ionization will lead to a decrease in m and thereby an increase in
pressure by a factor w3.25. As the temperature increases the
ionization perturbation decreases leading to convergence of the
ideal number density and the non-ideal number density at high
temperatures. This non-ideal effect is seen in Fig. 1(d).

Finally, as the density of the gas increases, so does the impor-
tance of electron degeneracy pressure. Electron degeneracy is
important when the temperature is on the order of or smaller than
the electron degeneracy temperature To¼ 4.5�10�11n2/3 K, where
n(cm�3) is the electron number density [11]. Again using titanium
as an example, for r¼ 0.1 g cm�3, To¼ 5.0�103 K while for
r¼ 4.5 g cm�3, To¼ 5.9�104 K. As a result, we can expect electron
degeneracy pressure to have an effect for the high-density gases at
temperaturesw105 K. The minimum electron degeneracy pressure,
Pd¼ (2.0�10�11) kbn

5/3 dyne/cm2 [11] where n is the electron
number density (cm�3) and kb is Boltzmann’s constant, for Ti gas at
solid density and T¼ 5.0�104 K is on the order of 2.0�1011 dyne/
cm2 for singly ionized Ti. This electron degeneracy pressure results
in an increase in the pressure of a non-ideal gas relative to an ideal
gas. As with the ionization potential, this effect will disappear at
high temperatures well above the electron degeneracy tempera-
ture. The electron degeneracy pressure also vanishes at the lower
temperatures when Ti is neutral. This non-ideal effect can be seen
in Fig. 1(d).

The combination of Coulomb interactions, ionization potential
perturbation and electron degeneracy will increase the pressure of
a non-ideal gas relative to that of an ideal gas as the density of the
gas increases. For example, at T¼ 5.0�104 K, the factor of 3.25
increase in pressure associated with the ionization potential
perturbation and the 2.0�1011 dyne/cm2 increase in pressure
associated with electron degeneracy explain the difference
between the non-ideal and ideal gas pressures plotted in Fig. 1.
Given that our experiments involve vaporized solids at high
densities, the expected non-ideal nature of these gasesmakes using
an ideal EOS insufficient to accurately simulate the hydrodynamics.

Another example of the need for non-ideal EOS is the simulation
of a solid material. A solid by it’s very nature implies that there are
non-collisional interactions between particles. The strong bonding
betweenparticles restricts the ability of the particles tomove freely.
Therefore when energy is added to a solid this energy is used to
break bonds before being used to increase kinetic energy, an
obvious deviation from an ideal gas. Currently, AstroBEAR does not
explicitly track the phase of a material; it instead relies on the
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SESAME tables which contain implicit phase behavior, mainly
through the pressure derivatives. With solid materials, as with
high-density plasmas, a non-ideal EOS must be used to model the
laboratory experiments accurately.

We used the SESAME tables, provided by Los Alamos National
Laboratory (LANL), to determine the non-ideal EOS for the mate-
rials of interest. The SESAME tables are a collection of tabular
results for many different elements and materials from a variety of
sources, and these tables provide an array of physical properties.
Since our code uses pressure and pressure gradients to determine
flow we used the SESAME tables for pressure as a function of mass
density and temperature. Energy density is a conserved variable
and not temperature, so the SESAME table for energy density as
a function of temperature and mass density had to be inverted to
allow for the calculation of temperature. The tabular entries are
derived from a combination of experimentally observed values,
theoretically determined values, and interpolated values. These
tables also include a series of FORTRAN routines for retrieving
values and for interpolation.

The derivative of pressure with respect to energy density at
constantmass density is contained in the SESAME tables and plays an
important role in the computational scheme described in Section 3.
For an ideal gas, this derivative canbe easily calculated fromEq. (4) as:

k ¼ vP
ve
j
r
¼ g� 1 (7)

which is equal to 2/3 for both monatomic and non-relativistic
electron degenerate gases. Therefore we expect that in the low
density-low temperature and high temperature limits a gas will
behave like an ideal gas and that kwill asymptotically approach 2/3.
We also expect that at the highest densities when electron
degeneracy is dominant k will remain 2/3. In the non-ideal gas
regime the energy is partitioned between increasing kinetic energy
and ionization. In this sense ionization acts as an additional degree
of freedom and decreases g in much the same way that the rota-
tional and vibrational modes of a molecule decrease g. Therefore
we expect k to decrease in the reT regions where ionization is
important. Fig. 2, a plot of k for titanium obtained from the SESAME
tables, clearly shows these trends. The lowest and highest densities
asymptote to w2/3 in low temperature limit and all densities
asymptote to 2/3 in the high temperature limit. For the interme-
diate temperatures k clearly drops as the gas begins to ionize and
then returns to 2/3 when the gas becomes fully ionized. There is
also a bump occurring at temperatures w8.0�104 K which corre-
sponds to the transition from TiIV to TiV as the dominant ionization
species. This increase is expected because TiV is an Ar-like closed
shell and much more difficult to ionize. Hence, the partition of
energy is shifted back towards increasing kinetic energy and
thereby raising g. The final feature to note in Fig. 2 is the rise of k at
low temperatures for densities where Ti is expected to be solid but
not fully degenerate; these values of k represent the phase infor-
mation implicitly contained in the SESAME tables.

Another aspect of laboratory experiments that differs from
many astrophysical situations is the need to simulate multiple
materials (see Section 3). Previously AstroBEAR had no capability to
handle multiple non-ideal materials. Since each material in
a simulationwill have a unique EOS, anymodification to the code to
include non-ideal EOS also necessarily requires multiple non-ideal
material capability. The computational approach to multiple
materials used here will be discussed in the following two sections.
3. Numerical methods

The Euler equations in Cartesian geometries are given by

vQ
vt

þ vfx
vx

þ vfy
vy

þ vfz
vz

¼ 0 (8)

where Q and the flux matrix fx are given by:

Q ¼ �
r rvx rvy rvz E rT

�
(9)

fx ¼ �
rvx rv2x þ P rvyvx rvzvx ðE þ PÞvx rTvx

�
(10)

fy ¼
h
rvy rvxvy rv2y þ P rvzvy ðE þ PÞvy rTvy

i
(11)

fz ¼ �
rvz rvxvz rvyvz rv2z þ P ðE þ PÞvz rTvz

�
(12)

where r is the mass density, E is the total energy density per unit
volume, vx is the fluid velocity along the x coordinate direction, vy
and vz are the velocity components in the transverse direction, P is
the gas pressure and rT is a passive flow tracer. For the present study
we have updated the implementation of the hydrodynamic Riemann
solver of Roe [13] for an arbitrary equation of state. The Roe approach
considers the Euler equations in an approximate linearized form,

vQ
vt

þ Ax
vQ
vx

þ Ay
vQ
vy

þ Az
vQ
vz

¼ 0 (13)

The AstroBEAR code implements several integration schemes for
advancing of conservation law systems as described in Section 2 of
Cunningham et al. [10]. The code is implemented so that the system
of conservation laws under consideration are specified by the
eigenvalues, right eigenvectors and left eigenvectors of the system
matrix Ax i;j ¼ vfx i

vQj
. The linearized Euler equations are specified by

the system matrix

AxðQ Þ ¼

2
6666664

0 1 0 0 0 0
c� v2x þkv2=2 �ðk�2Þvx �kvy �kvz �k 0

�vxvy vy vx 0 0 0
�vxvz vz 0 vx 0 0

c� vxHþkvxv2=2 �kv2x þH �kvyvx �kvzvx kvx 0
rTvx=r rT=r 0 0 0 vx

3
7777775

(14)

where v¼ velocity, H¼ enthalpy per unit mass. Following the
approach described by Mottura [14], we have defined the system
matrix in terms of the pressure derivatives
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H ¼ P þ E
r

(15)

c ¼ vP
vr

j
e

(16)

k ¼ vP
ve
j
r

(17)

to implement arbitrary equation of state capability where
¼ E� rv2/2 is the thermal energy per unit volume. In terms of the
pressure derivatives, the sound speed is defined as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ k

�
H � 1

2
v2
�s

(18)

The desired eigenvalues are given as the components of the vector

l ¼ ½ vx � c vx vx vx vx vx þ c �T (19)

the corresponding right eigenvectors are the columns of the matrix

R ¼

2
6666664

1 0 0 1 0 1
vx � c 0 0 vx 0 vx þ c
vy 1 0 vy 0 vy
vz 0 1 vz 0 vz

H � vxc vy vz v2=2 0 H þ vxc
rT=r 0 0 0 1 rT=r

3
7777775

(20)

and the corresponding left eigenvectors are the rows of the matrix

L ¼

2
66666666666664

c2þcvxþkðu2�HÞ
2c2

�kvx�c
2c2

�kvy
2c2

�kvz
2c2

k
2c2 0

�vy 0 1 0 0 0
�vz 0 0 1 0 0

kðH�v2Þ
c2

kvx
c2

kvy
c2

kvz
c2

�k
c2 0

rTð1þkðH�v2ÞÞ
c2

rTkvx
c2

rTkvy
c2

rTkvz
c2

�rTk
c2 1

c2�cvxþkðu2�HÞ
2c2

�kvxþc
2c2

�kvy
2c2

�kvz
2c2

k
2c2 0

3
77777777777775

(21)

The Marquina [16] flux function implemented in the code calls for
the computation of the above eigen decomposition of fluid states
that are interpolated to the left, QL and right edge, QR, of each
computational cell interface. The Roe [10] flux option in the code,
on the other hand, calls for the decomposition of a suitably aver-
aged interfaces state. The density, fluid velocity and enthalpy are
given by

r ¼ ffiffiffiffiffi
rL

p ffiffiffiffiffi
rR

p
(22)

v ¼ vL
ffiffiffiffiffi
rL

p þ vR
ffiffiffiffiffi
rR

pffiffiffiffiffi
rL

p þ ffiffiffiffiffi
rR

p (23)

H ¼ HL
ffiffiffiffiffi
rL

p þ HR
ffiffiffiffiffi
rR

pffiffiffiffiffi
rL

p þ ffiffiffiffiffi
rR

p (24)

rT ¼ rT L
ffiffiffiffiffi
rL

p þ rT R
ffiffiffiffiffi
rR

pffiffiffiffiffi
rL

p þ ffiffiffiffiffi
rR

p (25)

and for a general equation of state, an interface average of the
pressure derivatives is also required. For the present work we have
used the arithmetic average

k ¼ kL þ kR
2

(26)
c ¼ cL þ cR
2

: (27)

Because the code utilizes the arithmetic averaged linearized Rie-
mann solver of Ryu and Jones [17] for magnetohydrodynamical
problems, we expect this choice of pressure derivative averaging
will allow simpler extension for MHD problems.

4. Validation testing

We used the van derWaals EOS and the series of four shock tube
problems named WV1, DG1, DG2, and DG3 by Guardone and Vig-
evano [18] to validate the implementation of the method described
in Section 3. With this van der Waals EOS, pressure and its deriv-
atives are given by:

P ¼ d
E þ ar2

1� br
� ar2 (28)

c ¼ d
b
	
E � ar2


þ 2ar

ð1� brÞ2
� 2ar (29)

k ¼ d

1� br
(30)

where a and b are the van der Waals constants, E is thermal energy
density, r is mass density, d¼ (R)/(mocv), mo is the mean molecular
weight, cv is the specific heat at constant volume, and R is the
universal gas constant.

Figs. 3 and 4 show the shock tube test problem results and Table
1 shows the initial conditions for the four tests, where pressure and
density are defined relative to the critical values Pcrit¼ a/(27b2) and
rcrit¼ 1/(3b). These 1D simulations contained 400 cells from x¼ 0
to 1.0 with the density and pressure jumps initially occurring at
x¼ 0.5. In each plot, the results obtained from AstroBEAR’s ideal
EOS are plotted against the results from AstroBEAR’s van der Waals
EOS. In all four cases AstroBEAR’s non-ideal Roe implementation
scheme shows excellent agreement with the results found in
Guardone and Vigevano [18].
5. Problem setup

The code utilizes advective tracers to track how different
materials move. The advection equation

vrT
vt

þ vrTvx
vx

þ vrTvy
vy

þ vrTvz
vz

¼ 0 (31)

sets up an advected density for each different material. Initially all
cells are defined to be a single material, and each different material
involved in the simulation is assigned its own tracer. At any point in
the simulation a combination of the conserved variable of mass
density and the value of each material’s tracer define the mass
percentage of each material in that cell. These percentages
combined with the total mass density flux of a particular cell
determine the flux for eachmaterial in that cell. For example, a pure
titanium cell at a density of 4.5 g cm�3 has a titanium tracer value of
4.5, while other tracers are assigned value of 0.0. The fractional
energy density of each material is also necessary. The fraction of
each cell’s energy that is assigned to a particular material is
determined by using a weighted average. The mass fraction of
a material combined with its molar mass is used to calculate the
molar fraction of that material for that cell. The energy density
fraction is defined to be the same as the mole fraction of a material
in a cell. After determining themass fraction and energy fraction for
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R.L. Carver et al. / High Energy Density Physics 6 (2010) 381e390386
a material in a particular cell, these values are used to look up the
values for pressure, c, and k from the SESAME tables. The final c and
k for an entire cell are the weighted averages of the c’s and k’s of
each material in the cell, based on their molar fraction of the
material. The mixed material cells are assumed to be fully mixed
gases. The total pressure for the cell is defined to the sum of the
SESAME pressure for each material.

These material tracers will undergo the same numerical diffu-
sion as any other fluid quantity advected through the grid due to
the second order accuracy of the time advance algorithm. We track
the individual fluid species in a manner that is both conservative
and consistent with the advection of the total fluid density using
themethod of Plewa andMuller [19]. This method renormalizes the
fluid tracer fluxes computed by the integration scheme to be equal
to the flux of the total fluid density at each grid cell interface.
However, AstroBEAR does not have explicit interface tracking and
thus material interfaces still will get spread over a few zones in
a manner that is determined by numerical diffusion.

Fig. 5 shows the schematic of the target used in designing the
simulation’s initial conditions [20], with all material boundaries
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initially mesh aligned. The titanium plate andwasher are defined to
be initially at 300 K at a density of 4.4467 g cm�3 using SESAME
table 2961. The foam is defined using the CH SESAME table 7592 at
a temperature of 300 K and a density of 0.1 g cm�3. The vacuum
space inside thewasher was defined using the dry air SESAME table
5030 at a temperature of 300 K and a density of 0.001 g cm�3.
Simulations are 3.0 mm by 2.0 mmwith a resolution of 8 mm, using
a 360� 240 mesh. Extrapolating boundaries were used for the left,
right and top boundaries and a reflecting boundary was used for
the bottom. The second order accurate MUSCL-Hancock integration
method was used. The linearized Roe solver was used for solving
the flux function as described earlier. Simulations were run for
approximately 150 ns. Laser deposition occurs in the hohlraum on
the left edge of Fig. 5 heating it up to temperatures on the order of
106 K. The peak blackbody radiation at these temperatures is X-ray,
which illuminates the left side of the titanium plate not covered by
the gold washer. It drives ablated material to the left and a strong
shock to the right.

The simulation of laboratory experiments also should include
a treatment of the laser used to drive the experiment. As an



Table 1
van der Waals shock tube initial conditions

Test Pl rl Pr rr

WV1 1.60770 1.010 0.8957 0.594
DG1 3.00 1.818 0.5750 0.275
DG2 1.09 0.879 0.8850 0.562
DG3 1.09 0.879 0.5750 0.275
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Fig. 6. LANL pressure profile used to simulate laser drive.
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astrophysical based code, AstroBEAR was not designed with any
type of laser deposition capability. The code does not currently have
the physics necessary to simulate laser deposition. Therefore, we
approximated the pressure drive from the laser using the hydro
code RAGE [15] out of LANL, which does have ablation simulation
capability. RAGE was able to generate a pressure profile as a func-
tion of time along the laser deposition surface. This pressure profile
allowed us to calculate energy densities necessary to generate the
proper pressure in the deposition layer of the titanium surface.
Currently the deposition layer is defined to be the ghost zones to
the left of the simulated target and vertically up to the beginning of
the gold layer as shown in Fig. 5. These cells are specifically defined
as a function of time to have the necessary energy density needed
to recreate the pressure profile provided by LANL. Fig. 6 is a plot of
the pressure profile used in the simulation. The x-axis shows time
in ns after the beginning of the laser pulse. The y-axis shows the
pressure inside the deposition layer in dyne/cm2. This approxi-
mation of the laser pulse will not simulate all of the physics
involved in the laser drive and will cause the simulated results to
differ from experimental results.

6. Results and analysis

Fig. 7 shows a comparison of 2D cylindrically symmetric
AstroBEAR simulations and experimental data at 100 ns after the
laser drive. Panel (a) depicts a simulated radiograph from an ideal
EOS setup containing only neutral hydrogen, using the drive pres-
sure profile provided by LANL. Panel (b) is a simulated radiograph
from a simulation using the same setup, but with the newly
implemented SESAME based non-ideal EOSwithmultiplematerials
instead of the single material ideal EOS. Panel (c) is actual experi-
mental data. Features of note in the experimental data include the
shock front position, shock width, and the presence of an interior
flute-like jet. This interior jet is caused by the collapse and subse-
quent rebounding of the walls of the titanium washer after
Fig. 5. Laser targe
vaporized titanium has accelerated through the vacuum [20] The
simulated radiographs have been grey-scaled to give an accurate
representation of the structure of the jet but have not been
matched in grey-scaling to the experimental radiograph.

Fig. 8 plots the position of the jet head as a function of time in
the experiment and the simulations, where distance is measured
from the face of the titanium washer. Both the ideal and non-ideal
simulations are in reasonably good agreement with the experi-
mental data, although the position of the head is approximately
35% ahead of the experimental data. This discrepancy is most likely
caused by the approximation of the laser pulse using the pressure
profile in Fig. 6. Small changes to the pressure profile affect the
position of the head with respect to time without significantly
affecting the morphology of the jet.

The ideal EOS radiograph shows obvious inaccuracies in simu-
lating the laboratory environment. While the position of the shock
front is similar to the experimental data, the ideal radiograph bears
almost no morphological resemblance to the experiment. In
contrast, the non-ideal EOS simulation shows dramatic improve-
ment in modeling the overall morphology of the experiment. The
non-ideal simulation reproduces both the lateral shock and a flute-
like shape for the interior jet, key factors missing from the ideal
simulation. Remaining differences between the non-ideal simula-
tion of the interior jet and that seen in the experiment arise in part
because of the ideal treatment of cells with mixed materials
t schematic.



Fig. 7. Simulation comparison.
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(Section 3). These mixed cells occur as the jet forms from the
collapse of the washer, and are important for determining how the
jet evolves.
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7. Summary

A non-ideal EOS and a capability to handle multiple non-ideal
materials was successfully added to the astrophysical MHD code,
AstroBEAR. Redefining the flux function in terms of pressure and its
derivatives proved to be more successful than forcing a non-ideal
EOS into an ideal EOS framework. Our first non-ideal EOS simula-
tions from AstroBEAR show that a non-ideal EOS framework is
clearly preferable to an ideal EOS for the simulation of laboratory
experiments.

While the basic capability for using non-ideal EOS has been
achieved, plenty of room exists for further improvement. For
example, including the physics necessary to properly simulate the
laser drive will lead to better models of the jet’s evolution. The
calculation of mixed cells involving solids and gases may be
improved, and a more sophisticated treatment of energy splitting
for mixed cells can be implemented, taking into account a mixed
cell with different states of matter. Finally, the 8 mm resolution of
these simulation is insufficient to capture all of the morphological
detail present in the experimental data. Further simulations will
require 3D simulations at higher resolution to more accurately
predict experimental results. AstroBEAR now has stable basic
implementation of a non-ideal EOS capability upon which these
improvements can be added.
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